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Intro

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the 
open-source software ecosystem required to not only improve the efficiency of the EPI hardware but 
also accelerate and ease the processor’s integration into the cloud.
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Intro 

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the 
open-source software ecosystem required to not only improve the efficiency of the EPI hardware but 
also accelerate and ease the processor’s integration into the cloud.

Target platform:  

European high-performance energy-efficient processor (ARM based), dedicated to high performance 
computing, and designed to work with third-party accelerators, see
[ https://sipearl.com/ ]

RHEA images kindly provided by SIPEARL

https://sipearl.com/
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Intro 

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the 
open-source software ecosystem required to not only improve the efficiency of the EPI hardware but 
also accelerate and ease the processor’s integration into the cloud.

Objectives:  [ https://aero-project.eu/about/ ] 

- Managed Programming Languages
- Native Programming Languages & Runtimes
- OS, drivers & virtualization support
- State-of-the-art cloud deployments
- Hardware acceleration for performance & security
- Adoption of the EU cloud ecosystem

https://aero-project.eu/about/
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- Automotive Digital Twins with IoT-Cloud Interoperability​

- High Performance Algorithms for Space Exploration (Gaia)
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… GAIA …



Gaia 

Gaia was a space based astronomy telescope of ESA operational 2014-2025. 

Gaia has made more than three trillion observations of two billion stars and other objects throughout 
our Milky Way galaxy and beyond, mapping their motions, luminosity, temperature and composition. 

Scientific objectives:

- First 3d map of our galaxy

- Insides on the origin and formation of our galaxy

- Detection of diverse variable phenomena

- Many more … see [ https://www.cosmos.esa.int/web/gaia/science ]

https://www.cosmos.esa.int/web/gaia/science
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Gaia 

Gaia was a space based astronomy telescope of ESA operational 2014-2025. 

Gaia has made more than three trillion observations of two billion stars and other objects throughout 
our Milky Way galaxy and beyond, mapping their motions, luminosity, temperature and composition. 

Data and compute challenge:

- Petabyte scale

- ~ 10 Billion photometric time series

- ~ 5 Billion spectra time series

We solve this with Postgres !



Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the 
open-source software ecosystem required to not only improve the efficiency of the EPI hardware but 
also accelerate and ease the processor’s integration into the cloud.

Intertwined Gaia+SED pilots:

- Process efficiently constantly increasing volumes of data. 

- Enable GPU computations directly within the database

- Optimize data and compute pipeline for RHEA

Intro



Intro

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the 
open-source software ecosystem required to not only improve the efficiency of the EPI hardware but 
also accelerate and ease the processor’s integration into the cloud.

Intertwined Gaia+SED pilots:

- Process efficiently constantly increasing volumes of data. 

- Enable GPU computations directly within the database

   Example: Hack to GPU accelerate a Postgres vector index
   
    (WARNING: This will be technical …)
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Often just referred to as Vector Search.

For a query point q :

What are its k nearest neighbors?
X2

X1

Wikipedia - OpenAI embeddings
1536d -> 2d projection (UMAP for 100k subset)

Vector Search 

q

[ Dataset generated by S. Sturges, 2023 ]
( https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings )
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Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

For a query point q :

What are its k nearest neighbors?

Note:

Growing interest due to ML / AI 
generated vector embeddings.

For instance:
 
Retrieval-Augmented Generation

Vector Search 

X2
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Wikipedia - OpenAI embeddings
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Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

For a query point q :

What points are close by ?

Vector Search 

X2

X1

Wikipedia - OpenAI embeddings
1536d -> 2d projection (UMAP for 100k subset)

q

[ Dataset generated by S. Sturges, 2023 ]
( https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings )

epsilon
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Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

For a query point q :

What points are close by ?

Note:

Of interest for classical unsupervised 
learning algorithms.

kNN, DBSCAN, ...

            Application to Gaia data

Vector Search 

X2

X1

Wikipedia - OpenAI embeddings
1536d -> 2d projection (UMAP for 100k subset)

q

[ Dataset generated by S. Sturges, 2023 ]
( https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings )

epsilon

https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings


Vector Search 

Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

BUT:

Requires for each query point N distance calculations + ranking.
( With N the number of datapoints in the dataset )

How to scale to large datasets ?
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Vector Search 

IVFFLAT

Several flavours exist, but IVFFLAT is the conceptually simplest algorithm.

- Build vector index on dataset
via K-means clustering

- Index each datapoint to the
closest cluster (centroid)

- Evaluate query point q only 
against cluster members of 
the m nearest centroids.

Recall / Performance 
tradeoff

BUT: 

- Strongly depends on distribution of data
- High recall may effectively result in brute-force scan

m=3q



Vector Search 

IVFFLAT

Several flavours exist, but IVFFLAT is the conceptually simplest algorithm.

- Build vector index on dataset
via K-means clustering

- Index each datapoint to the
closest cluster (centroid)

- Evaluate query point q only 
against cluster members of 
the m nearest centroids.

Recall / Performance 
tradeoff

GOOD: 

- Relatively fast and cheap to build index
- Very suitable for parallelization

m=3q
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Vector Search 

Approximate Nearest Neighbour search

A bit more conceptually challenging is HNSW. But nowadays often preferred algorithm due to 
generally better recall / performance behavior.  
  

[ Malkov and Yashunin, 2016 ]

Hierarchical navigable small world

This talk: Mainly inference will be discussed



HNSW inference

A bit more conceptually challenging is HNSW. But nowadays often preferred algorithm due to 
generally better recall / performance behavior.  

Vector Search 

HNSW

L0

L1

Multi-layered graph
(figure is simplified, usually many more layers) [ Malkov and Yashunin, 2016 ]
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- Graph construction can be very compute 
and memory intensive

- Difficult to parallelize and distribute
- Large top k with filters tricky
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Vector Search 

L0

L1

[ Malkov and Yashunin, 2016 ]

q

e

Search via greedy graph traversal
(keeping closest k visited nodes along the way)

BUT:

- Graph construction can be very compute 
and memory intensive

- Difficult to parallelize and distribute
- Large top k with filters tricky



HNSW inference

“Large top k with filters tricky”

For a query point q :

What points are close by ?

Vector Search 

X2

X1

Wikipedia - OpenAI embeddings
1536d -> 2d projection (UMAP for 100k subset)

q

[ Dataset generated by S. Sturges, 2023 ]
( https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings )

epsilon

https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings


HNSW inference

“Large top k with filters tricky”

For a query point q :

What points are close by ?

             IVFFLAT of main interest for this talk.

Vector Search 

X2

X1

Wikipedia - OpenAI embeddings
1536d -> 2d projection (UMAP for 100k subset)

q

[ Dataset generated by S. Sturges, 2023 ]
( https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings )

epsilon

https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings


Vector Search 

Approximate Nearest Neighbour search

Remark: 

There are also newer, more specialized, algorithms which gain in popularity.

For example: 

DiskANN: Applicable to large scale problems (beyond RAM). 

CAGRA: HNSW variant optimized for GPU execution. 

[  Subramanya et al., 2019 ]

[  Ootomo et al., 2024 ]



Vector Search 

Postgres implementation

Most well-known and popular: pgvector
( https://github.com/pgvector/pgvector )

Introduces new PG type (vector), distance operators acting on vectors, and can build indices for 
vector columns.

Exact, and HNSW or IVFFLAT based approximate vector search. Many different metrics, but here we 
are mainly interested in euclidean distance (<->) and cosine distance (<=>).

Query example:

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 10000

https://github.com/pgvector/pgvector
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Postgres implementation

Most well-known and popular: pgvector
( https://github.com/pgvector/pgvector )

Introduces new PG type (vector), distance operators acting on vectors, and can build indices for 
vector columns.

Exact, and HNSW or IVFFLAT based approximate vector search. Many different metrics, but here we 
are mainly interested in euclidean distance (<->) and cosine distance (<=>).

Query example:

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 10000

Column of vector type Metric operator (L2) 
acting on vector types 

Vector type
for example: ‘[3,0.1,-1.2,5]’

https://github.com/pgvector/pgvector


Vector Search 

Postgres implementation

Most well-known and popular: pgvector
( https://github.com/pgvector/pgvector )

Introduces new PG type (vector), distance operators acting on vectors, and can build indices for 
vector columns.

Exact, and HNSW or IVFFLAT based approximate vector search. Many different metrics, but here we 
are mainly interested in euclidean distance (<->) and cosine distance (<=>).

Query example:

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 10000

Index on vector column

Reduce number of required distance calculations via “index” /  approx vector search.
(Worst case: For all rows) 

https://github.com/pgvector/pgvector


Vector Search 

Postgres implementation

Newcomer: pgvectorscale (timescale)
( https://github.com/timescale/pgvectorscale/ )

DiskANN based approximate vector search. 

Offers euclidean distance, cosine distance and inner product.

Interesting feature: Label filter push down into index scan.

https://github.com/timescale/pgvectorscale/


Vector Search 

Postgres implementation

Newcomer: pgvectorscale (timescale)
( https://github.com/timescale/pgvectorscale/ )

DiskANN based approximate vector search. 

Offers euclidean distance, cosine distance and inner product.

Interesting feature: Label filter push down into index scan.

Note: 

Mentioned only for completeness. In this talk I will not dive further into pgvectorscale.

https://github.com/timescale/pgvectorscale/


… PGVECTOR …
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pgvector

PostgreSQL plan generation (simplified)

FROM

WHERE

ORDER BY

LIMIT

Sequential or index scan 
(depending on cost estimate)
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Vector Search 

pgvector

PostgreSQL plan generation (simplified)

FROM

WHERE

ORDER BY

LIMIT

Pgvector implements INDEXAM
(Index Access Method Interface)

Core index functions:

ambuild
aminsert 
ambeginscan
amrescan
amendscan
amgettuple
…

One or both will
be pushed 
down to 
INDEXAM 
implementation

More on this later …

PostgreSQL execution ROW 
based

Has to return ItemPointerData on 
each call (xs_heaptid) 

Pointer to an item within a 
disk page of a known file
(block + offset)



Vector Search 

pgvector

PostgreSQL plan generation (simplified)

FROM

WHERE

ORDER BY

LIMIT

Pgvector implements INDEXAM
(Index Access Method Interface)

Core index functions:

ambuild
aminsert 
ambeginscan
amrescan
amendscan
amgettuple
…

One or both will
be pushed 
down to 
INDEXAM 
implementation

More on this later …

PostgreSQL execution ROW 
based

First call: 
Pgvector performs approx 
vector search.

Subsequent calls:
Found ItemPointers are 
returned.



Vector Search 

pgvector

What about performance ?

Hardware:

- i9-13900H + RTX 4070 [35W]

Software:

- Ubuntu 22.04
- gcc/g++-14; icpx
- Python 3.10.12 + psycopg2 2.9.6
- Standard Postgres v15 

(no special compile flags besides -g)

- PGvector master on Mar 24, 2025
(commit 05182479a2a62e04300386b4da18be02fcb819b5)
(compiled with -O3 -march=native -g) 

 



Vector Search 

pgvector

What about performance ?

Settings:

- Queried locally via python+psycopg2
(on persistent connection)

- IVFFLAT: 200 clusters
- Recall computation for IVFFLAT via variation of # probes. 

(Smallest # probes for fixed recall + median at fixed recall) 

- Recall computation for HNSW via variation of ef_search parameter. 
(Smallest parameter for fixed recall + median at fixed recall) 
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pgvector

What about performance ?

Settings:

- Queried locally via python+psycopg2
(on persistent connection)

- IVFFLAT: 200 clusters
- Recall computation for IVFFLAT via variation of # probes. 

(Smallest # probes for fixed recall + median at fixed recall) 

- Recall computation for HNSW via variation of ef_search parameter. 
(Smallest parameter for fixed recall + median at fixed recall) 

 Variation in discrete steps

IVFFLAT: 10 probes given by cutting points of [1,100] into equal size ranges
HNSW: [100, 200,..., 1000]



Vector Search 

pgvector

What about performance ?

GIST-960 dataset [Jégou, Douze and Schmid, 2011] ( http://corpus-texmex.irisa.fr/ ) 

- 1M vectors
- 960d 
- 1k test vectors
- Pre-computed 100 nearest neighbors (euclidean metric)

 (Vectors given by global GIST descriptors of image dataset. GIST summarizes the gradient information for different parts of an image.)

DEEP1B dataset [Babenko and Lempitsky, 2016] ( https://www.tensorflow.org/datasets/catalog/deep1b ) 

- 10M vectors (subset of 1B)
- 96d 
- 10k test vectors (we use first 1k)
- Pre-computed 100 nearest neighbors (cosine metric)

 (Vectors given by PCA of 1B image embeddings produced as outputs from the last fully-connected layer of a GoogLeNet CNN model)

http://corpus-texmex.irisa.fr/
https://www.tensorflow.org/datasets/catalog/deep1b
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select id from gist order by embedding <-> "+q+" limit 100 select id from deep1b order by embedding <=> "+q+" limit 100
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Vector Search 

pgvector

What about performance ?

 
select id from gist order by embedding <-> "+q+" limit 100 select id from deep1b order by embedding <=> "+q+" limit 100

~ 9x
~ 19x

Median in range [0.8, 1.0]



Vector Search 

pgvector (ivfflat)

What about performance ?

GIST-960 dataset (1M, 960d)

Time thieves:

- ReadBuffers
- Tuplesort
- Distance calculation

[Generated with FlameGraph] ( https://github.com/brendangregg/FlameGraph )

Ivfflat inference perf analysis 

https://github.com/brendangregg/FlameGraph


Vector Search 

pgvector (ivfflat)

What about performance ?

DEEP-1B dataset (10M, 96d)

Time thieves:

- Tuplesort
- ReadBuffers
- Distance calculation

[Generated with FlameGraph] ( https://github.com/brendangregg/FlameGraph )

Ivfflat inference perf analysis 

https://github.com/brendangregg/FlameGraph


Vector Search 

pgvector (ivfflat)

What about performance ?

pgvector github, ivfscan.c, 2025

All points in cluster(s) are read 
again from buffers on each call !

License of pgvector, 2025 

Time thieves:

- ReadBuffers
- Tuplesort
- Distance calculation



… HACKING PGVECTOR …



Vector Search 

pgvector hack (ivfflat)

Can we do better ?  ( https://github.com/Sednai/pgvector/tree/AERO_v2 )

Keep index data persistent in Non-Postgres controlled memory:

- No Buffers but continuous arrays
- No TupleSort 
- Possibility for better optimization for hardware

https://github.com/Sednai/pgvector/tree/AERO


Vector Search 

pgvector hack (ivfflat)

Can we do better ?  ( https://github.com/Sednai/pgvector/tree/AERO_v2 )

Keep index data persistent in Non-Postgres controlled memory:

- No Buffers but continuous arrays
- No TupleSort 
- Possibility for better optimization for hardware

“In-memory vector database”
(instead of in-memory buffer db) Proof-of-concept

for 
a next generation pgvector

https://github.com/Sednai/pgvector/tree/AERO


Vector Search 

pgvector hack (ivfflat)

Implementation

Own Postgres background process with task queue in shared memory.

Added bonus: Resources can be managed over all user sessions (via queuing system). 



Vector Search 

pgvector hack (ivfflat)

Implementation

Own Postgres background process with task queue in shared memory.

Re-routing the index tuple scan as task to background worker during scan:

own process



Vector Search 

pgvector hack (ivfflat)

Implementation

For an indexed table, we store the index vectors and corresponding location info (ItemPointerData) 
as raw native arrays in Non-Postgres memory. 
(The data will be persistent over the lifetime of the background process. Have not implemented active memory management yet. Pgvector background process will crash if you 
run out of memory !) 

C/C++

own process



Vector Search 

pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and distance sort. 
Location infos are returned to the user process. 
(More precisely, the corresponding page number and ItemPointerData are returned.)

C/C++

own process



Vector Search 

pgvector hack (ivfflat)

What about performance ?

Note:

- No special tricks
- No multi-threading
- No manual vector instructions
- No HBM memory

GIST-960 inference perf analysis 

DEEP-1B inference perf analysis 
std::qsort
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pgvector

What about performance ?

 
select id from gist order by embedding <-> "+q+" limit 100 select id from deep1b order by embedding <=> "+q+" limit 100



Vector Search 

pgvector

What about performance ?

 
select id from gist order by embedding <-> "+q+" limit 100 select id from deep1b order by embedding <=> "+q+" limit 100

~ 2x
~ 2.5x



Vector Search 

pgvector hack (ivfflat)

Can we do better ?

Since we have already a setup to keep index persistent in Non-Postgres memory, we 
can easily go one step further and offload the index and compute to a GPU !  

Compute of distances and sort on device. 
Return only sorted index ids from device
(Mapping to location info on CPU)



Vector Search 

pgvector hack (ivfflat)

Can we do better ?

Since we have already a setup to keep index persistent in Non-Postgres memory, we 
can easily go one step further and offload the index and compute to a GPU !  

Example: Nvidia A100 

      ( for FP32 vectors of 100d that is enough to keep >200M index points persistent )

Compute of distances and sort on device. 
Return only sorted index ids from device
(Mapping to location info on CPU)

80 GB in additional memory !

~20 TFLOPS in FP32 compute power !



… GPU ACCELERATED VECTOR SEARCH …



Vector Search 

pgvector hack (ivfflat)

Implementation

For an indexed table, we store now the index vectors on a GPU device.
(The data will be persistent over the lifetime of the background process. Have not implemented active memory management yet. Background process will crash if you run out of 
memory !) 

C++ / CUDA
(essentially one big cudaMemcpy)

own process



pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and distance sort on 
device. Only ordered index ids are returned from GPU.

Vector Search 

C++ / CUDA
(custom kernels)

own process
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What about performance ?

 
select id from gist order by embedding <-> "+q+" limit 100 select id from deep1b order by embedding <=> "+q+" limit 100



Vector Search 

pgvector hack (ivfflat) 

What about performance ?

 
select id from gist order by embedding <-> "+q+" limit 100 select id from deep1b order by embedding <=> "+q+" limit 100

~ 3.2x ~ 2.2x

~ 12x ~ 16x



Vector Search 

pgvector hack

Since we have now a basic vector search PG background worker:

Hack in Nvidia RAFT and cuVS library ?
( https://github.com/rapidsai/raft ) ( https://github.com/rapidsai/cuvs )

- Fullstack
(HNSW, IFFLAT, CAGRA, DiskANN; Index build + inference)

- As GPU backend available for FAISS, Milvus, Redis and others … 
( according to https://big-ann-benchmarks.com/neurips23_slides/NVIDIA_Corey.pdf )

https://github.com/rapidsai/raft
https://github.com/rapidsai/cuvs
https://big-ann-benchmarks.com/neurips23_slides/NVIDIA_Corey.pdf
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pgvector hack

Since we have now a basic vector search PG background worker:

Hack in Nvidia RAFT and cuVS library ?
( https://github.com/rapidsai/raft ) ( https://github.com/rapidsai/cuvs )

- Fullstack
(HNSW, IFFLAT, CAGRA, DiskANN; Index build + inference)

- As GPU backend available for FAISS, Milvus, Redis and others … 
( according to https://big-ann-benchmarks.com/neurips23_slides/NVIDIA_Corey.pdf )

May be a low effort way to get something new and complete into PG …

BUT: Do we really want to become vendor dependent ?

https://github.com/rapidsai/raft
https://github.com/rapidsai/cuvs
https://big-ann-benchmarks.com/neurips23_slides/NVIDIA_Corey.pdf


Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the 
open-source software ecosystem required to not only improve the efficiency of the EPI hardware but 
also accelerate and ease the processor’s integration into the cloud.

Heterogeneous hardware

PROBLEM: Divers set of accelerators from different vendors (NVIDIA, AMD, INTEL,...)

oneAPI
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also accelerate and ease the processor’s integration into the cloud.

Heterogeneous hardware

oneAPI

Open, cross-industry, standards-based, unified, multi-architecture, multi-
vendor programming model, adopted by Intel.



Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the 
open-source software ecosystem required to not only improve the efficiency of the EPI hardware but 
also accelerate and ease the processor’s integration into the cloud.

Heterogeneous hardware

oneAPI

Open, cross-industry, standards-based, unified, multi-architecture, multi-
vendor programming model, adopted by Intel.

Intel oneAPI base toolkit plugins for NVIDIA and AMD



pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and distance sort on 
device. Only ordered index ids are returned from GPU to CPU process.

Vector Search 

C++ / oneAPI
(custom kernels)

own process



pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and distance sort on 
device. Only ordered index ids are returned from GPU to CPU process.

Vector Search 



Vector Search 

pgvector hack (ivfflat)

What about performance ?

With OpenCL CPU oneAPI backend (all cores) 



Vector Search 

pgvector hack (ivfflat)

What about performance ?

  With OpenCL CPU oneAPI backend (all cores)

~ 2.8x ~ 3.2x



Vector Search 

pgvector hack (ivfflat)

What about performance ?

With Nvidia GPU oneAPI backend 



Vector Search 

pgvector hack (ivfflat)

What about performance ?

With Nvidia GPU oneAPI backend 

Seems the automatic kernels are not bad …
Artefact of using unified memory ?

~ 1.25x



… A SPECIAL CASE …



Vector Search 

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point. 
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Core ingredient to density based clustering algorithms.

Simplified:

X1

X2
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pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point. 

( From pgvector github README.md, 2025 )

Operator for L2 distance

Need quite large limit !



Vector Search 

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point. 

PROBLEM: Very very slow …

( From pgvector github README.md, 2025 )

Need quite large limit !



Vector Search 

pgvector

What about performance ?

- 2M row Gaia dataset, 79 float8 features
- 40 ivfflat clusters, ivfflat.probes = 20
- Retrieve points up to a max distance from a query point (sparse return) 
- After warmup

Original pgvector



Vector Search 

pgvector

Why ?

Let us look with GDB what actually happens for a query of type

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 10000

by setting a breakpoint at ivfscan.c:ivfflatgettuple :



Vector Search 

pgvector

Why ?

Let us look with GDB what actually happens for a query of type

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 10000

by setting a breakpoint at ivfscan.c:ivfflatgettuple :

IndexScanDesc No scan keys are pushed down !



Vector Search 

pgvector

Why no scan keys ?

We have to dig deeper … iss_NumScanKeys = 0 already in IndexScanState 

ExecInitBuildScanKeys:  quals are Null

=> Already before execution level no scan keys !



Vector Search 

pgvector

Why no scan keys ?

We have to dig deeper …

Let us look into indxpath.c:
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pgvector

Why no scan keys ?

We have to dig deeper …

Let us look into indxpath.c:

Query: 

select * from table where embedding <-> ‘[...]’ < 10 …

Indexkey can not be matched !

op( indexkey, ’[...’] ) op const



Vector Search 

pgvector

Why no scan keys ?

We have to dig deeper …

Let us look into indxpath.c:

Query: 

select * from table where embedding <-> ‘[...]’ < 10 …

Indexkey can not be matched !

op( indexkey, ’[...’] ) op const
=> Looks like Postgres enhancement required !

BUT: May take ages to get upstream …



Vector Search 

pgvector hack

Quicker to production: 

Let us introduce a new operator, thereby hacking the WHERE into the ORDER BY:
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Will come back to the last int later in this talk 
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Vector Search 

pgvector hack

Quicker to production: 

Let us introduce a new operator, thereby hacking the WHERE into the ORDER BY:

Query: 

select * from table order by embedding <!> (‘[...]’, -1, 10.0, 0) limit 10000 

Will be evaluated inside of pgvector ! 

-> Can also be executed on GPU ! 
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What about performance ?

- 2M row Gaia dataset, 79 float8 features
- 40 ivfflat clusters, ivfflat.probes = 20
- Retrieve points up to a max distance from a query point (sparse return)
- After warmup

BGW with filter on CPU
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Vector Search 

pgvector hack

What about performance ?

- 2M row Gaia dataset, 79 float8 features 
- 40 ivfflat clusters, ivfflat.probes = 20
- Retrieve points up to a max distance from a query point (sparse return) 
- After warmup

BGW with filter on GPU

=> 200x speedup !



… LIMIT TRICKS …



Vector Search 

pgvector hack 

PostgreSQL plan generation (simplified)

FROM

WHERE

ORDER BY

LIMIT

Hack with new vector type

Pgvector 
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pgvector hack

PostgreSQL plan generation (simplified)

FROM

WHERE

ORDER BY

LIMIT Hack with new vector type
(WARNING: Not fail safe if you do not know what you are doing !)

Limit push down



Vector Search 

pgvector hack

Why do I want to do that ?

FROM

WHERE

ORDER BY

LIMIT Hack with new vector type
(WARNING: Not fail safe if you do not know what you are doing !)

We can do instead of a full sort a partial sort (kth-element) + a small 
sort !

O(N) + O(k log k) scaling instead of O(N log N)

CPU:      std::nth_element
OneAPI: oneapi::dpl::nth_element

Nvidia:   Missing. Instead: raft::matrix::select_k



Vector Search 

pgvector hack

Example:

X2

X1

Wikipedia - OpenAI embeddings
(~220k vectors; 1536d)

~ 1.7x

~ 1.25x

PGVECTOR (index with 200 ivfflat clusters)

BGW-CPU

BGW-CPU with LMT ~ 2.2x



Vector Search 

pgvector hack

Example:

GIST-960 with CPU-BGW backend 



… REMARKS & OUTLOOK …



Vector Search 

pgvector hack

General remarks:

- Proof-of-concept

- No active memory management
( memory freed only upon killing the worker )

- Enough shared memory needs to be reserved for number of expected returns

- As more sparse the return, as better will be the speedup



Vector Search 

pgvector hack

Can we do more ?

- Improvements of code (GPU kernels) are possible. 

- Faster initial loading via Nvidia GPUDirect ( NVMe <-> GPU DMA )

- Product quantization

- Multi-threading on the worker level

- For significant performance improvement, more vectorization  … 
(for instance, to query for several points at once)

- Port other algorithms (HNSW, DiskANN, …)

- Use Nvidia RAFT and cuVS instead ?!



Funded by the European Union. Views and opinions are however those of the author(s) only and do not necessarily reflect those of the European Union or the HaDEA. Neither the 
European Union nor the granting authority can be held responsible for them. Project number: 101092850.

AERO has also received funding from UKRI under grants no. 10048318 and 10048915, and the Swiss State Secretariat for Education, Research, and Innovation.

… THANK YOU …

( feedback link )


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134

