Hacking pgvector for performance

Daniel Krefl
Sednai

$1.$2 @ sedn.ai

(feedback link)

@ PGonf.EU 2025

sednai

NERE

Intro

NEE
Aero aims to complement the efforts of the project by developing the

open-source software ecosystem required to not only improve the efficiency of the EPI hardware but
also accelerate and ease the processor’s integration into the cloud.

Project funded by

Funded by UK Research () s gt e ot o et
H H Confed Svi State Secretariat for Education,
the European Union and Innovation oo g e s

Swiss Confederation

Funded by the European Union. Views and opinions are however those of the author(s) only and do not necessarily reflect those of the European Union or the HaDEA. Neither the
European Union nor the granting authority can be held responsible for them. Project number: 101092850.

AERO has also received funding from UKRI under grants no. 10048318 and 10048915, and the Swiss State Secretariat for Education, Research, and Innovation.

L3UBITECH ((/SPEARL DIERER D GFRTH B Gunaopensyuens @ UNVERSTE @

MANCHESTER. \ ®
_ . D codepla
INNOVATION ~ pedHat o DE GENEVE codngi moia (play

Intro

NEE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the

open-source software ecosystem required to not only improve the efficiency of the EPI hardware but
also accelerate and ease the processor’s integration into the cloud.

RHEAY

HPC and Al processor

European high-performance energy-efficient processor (ARM based), dedicated to high performance
computing, and designed to work with third-party accelerators, see
[https://sipearl.com/]

Target platform:

RHEA images kindly provided by SIPEARL

MANCHESTER

AT f PIERER /& UNIVERSITE @
€) EEUBITECH | CISPERL | RiRRSRran neﬁat ®FORTH . & Guuopenspen @HNERTE @

C codeplay’

UNIVERSITA DI PISA

https://sipearl.com/

£

S3UBITECH | ([SPEARL |IERER 4 @FRTH @

Intro L)

NERE

Aero aims to complement the efforts of the project by developing the

open-source software ecosystem required to not only improve the efficiency of the EPI hardware but
also accelerate and ease the processor’s integration into the cloud.

Target platform:
RHE AV EYTIRT
HPC and Al processor 1G] A aesssser
Designed with
) 80 arm® Neoverse VI cores
[https://sipearl.com/] with 2 x 256 SVE each

4 x HBM 4 x DDR5 interfaces
RHEA images kindly provided by SIPEARL

}/ﬁ Virtual Open Systems gl o MANCHESIER

UN\V]R.‘»];‘\VIH Pisa DE GENEVE Sednoi

(codeplay’

INNOVATION RedHat

https://sipearl.com/

Intro

NERE
Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the

open-source software ecosystem required to not only improve the efficiency of the EPI hardware but
also accelerate and ease the processor’s integration into the cloud.

Objectives: [https.//aero-project.eu/about/ |

- Managed Programming Languages

- Native Programming Languages & Runtimes

- OS, drivers & virtualization support

- State-of-the-art cloud deployments

- Hardware acceleration for performance & security
- Adoption of the EU cloud ecosystem

£) ;. & PIERER @ -, @) UNIVERSITE @ MANCHESTER. ‘
f, RIUBITECH ([SPEARL [IERER . Regat @FORTH _ @M Gt open spens @5 RUETE @ RS © codeplay

https://aero-project.eu/about/

Intro .‘

NEE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the

open-source software ecosystem required to not only improve the efficiency of the EPI hardware but
also accelerate and ease the processor’s integration into the cloud.

Use cases / pilots:
- Automotive Digital Twins with loT-Cloud Interoperability
- High Performance Algorithms for Space Exploration (Gaia)

- HPC/Cloud Database Acceleration for Scientific Computing

H V4 PIERER @ -, &7 UNIVERSITE @
HEUBITECH [C/SPE'RL | wnowmrion Reaat @FORTH__ U@;m X0)vnual Open Sysvems | (3} DF'CENEVE cednai

MANCHESTER

C codeplay’

Intro .‘

NEE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the
open-source software ecosystem required to not only improve the efficiency of the EPI hardware but
also accelerate and ease the processor’s integration into the cloud.

Use cases / pilots:

- Automotive Digital Twins with_loT-Cloud Interoperability

H V4 PIERER @ -, 7% UNIVERSITE | @
HEUBITECH [C/SPE'RL wnowmrion Reaat @FORTH__ U@;m X)vual Open Sysems () pF'CENEVE cednai

MANCHESTER

C codeplay’

Intro .‘

NEE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the
open-source software ecosystem required to not only improve the efficiency of the EPI hardware but
also accelerate and ease the processor’s integration into the cloud.

Use cases / pilots:
- Automotive Digital Twins with loT-Cloud Interoperability
- High Performance Algorithms for Space Exploration (Gaia)

- HPC/Cloud Database Acceleration for Scientific Computing

‘\

H V4 PIERER @ -, &7 UNIVERSITE @
HEUBITECH [C/SPE'RL wnowmrion Reaat @FORTH__ U@;m X0)vnual Open Sysvems | (3} DF'CENEVE cednai

MANCHESTER

C codeplay’

-

sednai

.. GAIA ...

Gaia was a space based astronomy telescope of ESA operational

Gaia has made more than three trillion observations of two billion stars and other objects throughout
our Milky Way galaxy and beyond, mapping their motions, luminosity, temperature and composition.

Scientific objectives:

First 3d map of our galaxy

Insides on the origin and formation of our galaxy

Detection of diverse variable phenomena

Many more ... see [https://www.cosmos.esa.int/web/gaia/science]

https://www.cosmos.esa.int/web/gaia/science

Gaia was a space based astronomy telescope of ESA operational

Gaia has made more than three trillion observations of two billion stars and other objects throughout
our Milky Way galaxy and beyond, mapping their motions, luminosity, temperature and composition.

Scientific objectives:

First 3d map of our galaxy

Insides on the origin and formation of our galaxy

Detection of diverse variable phenomena

Many more ... see [https://www.cosmos.esa.int/web/gaia/science]

https://www.cosmos.esa.int/web/gaia/science

Gaia was a space based astronomy telescope of ESA operational

Gaia has made more than three trillion observations of two billion stars and other objects throughout
our Milky Way galaxy and beyond, mapping their motions, luminosity, temperature and composition.

Data and compute challenge:
- Petabyte scale
-~ 10 Billion photometric time series

-~ 5 Billion spectra time series

We solve this with Postgres !

Intro .‘

NEE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the

open-source software ecosystem required to not only improve the efficiency of the EPI hardware but
also accelerate and ease the processor’s integration into the cloud.

Intertwined Gaia+SED pilots:
- Process efficiently constantly increasing volumes of data.

- Enable GPU computations directly within the database

- Optimize data and compute pipeline for RHEA

1.2 & PIERER @ -, 7% UNIVERSITE | @
HEUBITECH [C/SPE'RL wnowmrion Reaat @FORTH__ U@;m X)vual Open Sysems () pF'CENEVE cednai

MANCHESTER

C codeplay’

Intro

NEE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the
open-source software ecosystem required to not only improve the efficiency of the EPI hardware but

also accelerate and ease the processor’s integration into the cloud.

Intertwined Gaia+SED pilots:
- Process efficiently constantly increasing volumes of data.

- Enable GPU computations directly within the database

Hack to GPU accelerate a Postgres vector index

(WARNING: This will be technical ...)

> PIERER @ /&% UNIVERSITE
=EUBITECH | J/SIPE'RL ynopaTion Reaat @FORTH _ U@im X3)vinval Open Systems . DE GENEVE

sednai

MANCHESTER

C codeplay’

sednai

... VECTOR SEARCH ...

Vector Search
Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

Vector Search
Motivation
Many data analysis algorithms require a nearest neighbour search in a D-dim space.

Often just referred to as Vector Search.
Wikipedia - OpenAl embeddings

For a query point q : 1536d -> 2d projection (UMAP for 100k subset)
X2 -
What are its k nearest neighbors?) *

10 1 Ly .
. %

>

0 5 10 15 20

X1
[Dataset generated by S. Sturges, 2023]
(https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings)

https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings

Vector Search

Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

Wikipedia - OpenAl embeddings
For a query point q : 1536d -> 2d projection (UMAP for 100k subset)

X2

What are its k nearest neighbors?

10 A

Note: 51

Growing interest due to ML / Al 0]
generated vector embeddings.

For instance:

Retrieval-Augmented Generation 0 5 10 15 20

X1
[Dataset generated by S. Sturges, 2023]
(https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings)

https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings

Vector Search
Motivation
Many data analysis algorithms require a nearest neighbour search in a D-dim space.

Often just referred to as Vector Search.
Wikipedia - OpenAl embeddings

For a query point q : 1536d -> 2d projection (UMAP for 100k subset)
X2 .
What points are close by ?) *

10 1 Ly .
. %

>

epsilon oo

X1
[Dataset generated by S. Sturges, 2023]
(https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings)

https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings

Vector Search
Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

Wikipedia - OpenAl embeddings
For a query point q : 1536d -> 2d projection (UMAP for 100k subset)

X2
What points are close by ? ' *

10 A

Note: S -

Of interest for classical unsupervised o
learning algorithms. “

kNN, DBSCAN, ...

epsilon oo

T T T T T
0 5 10 15 20

— Application to Gaia data X1

[Dataset generated by S. Sturges, 2023]
(https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings)

https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings

Vector Search
Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

BUT:

Requires for each query point N distance calculations + ranking.
(With N the number of datapoints in the dataset)

How to scale to large datasets ?

Vector Search

Approximate Nearest Neighbour search

Several flavours exist, but Is the conceptually simplest algorithm.
‘ DATA
X2 e o o’ &

® @

Y 4 ®
9

®, o »

DS
B

A

X1

Vector Search

Approximate Nearest Neighbour search

Several flavours exist, but /VFFLAT is the conceptually simplest algorithm.

. DATA
X2 e o oﬂ]

S &

Y 4 ®
InVerted File Flat Index e

®, o %

DB
D

A

X1

Vector Search \
sednai
IVFFLAT
Several flavours exist, but Is the conceptually simplest algorithm.
Build vector index on dataset 24 DATA

via K-means clustering
Index each datapoint to the
closest cluster (centroid)

v

Vector Search L
sednai
IVFFLAT
Several flavours exist, but Is the conceptually simplest algorithm.
- Build vector index on dataset X2 4 DATA

via K-means clustering

- Index each datapoint to the
closest cluster (centroid)

- Evaluate query point g only
against cluster members of
the m nearest centroids.

A J

BUT: Xl

- Strongly depends on distribution of data
- High recall may effectively result in brute-force scan

Vector Search L
sednai
IVFFLAT
Several flavours exist, but Is the conceptually simplest algorithm.
- Build vector index on dataset X2 4 DATA

via K-means clustering

- Index each datapoint to the
closest cluster (centroid)

- Evaluate query point g only
against cluster members of
the m nearest centroids.

A J

GOOD: Xl

- Relatively fast and cheap to build index
- Very suitable for parallelization

Vector Search

Approximate Nearest Neighbour search

A bit more conceptually challenging is . But nowadays often preferred algorithm due to

generally better recall / performance behavior.

X21

DATA
JER |
® e
o® ot a
e®
?

A

X1

[Malkov and Yashunin, 2016]

Vector Search

Approximate Nearest Neighbour search

A bit more conceptually challenging is . But nowadays often preferred algorithm due to
generally better recall / performance behavior.
. DATA
X2 e o og &
2 @
Y 4 ®
9
This talk: Mainly inference will be discussed ”
o® o »
B
DS
]

A

X1

[Malkov and Yashunin, 2016]

Vector Search

HNSW inference

A bit more conceptually challenging is . But nowadays often preferred algorithm due to
generally better recall / performance behavior.

DATA
JER |
® o
o® ot g
e®
?

A

X1

[Malkov and Yashunin, 2016]

Vector Search

HNSW inference

A bit more conceptually challenging is . But nowadays often preferred algorithm due to
generally better recall / performance behavior.

DATA
JER |
® o
o® ot g
e®
?

A

X1

[Malkov and Yashunin, 2016]

Vector Search

HNSW inference

A bit more conceptually challenging is . But nowadays often preferred algorithm due to
generally better recall / performance behavior.

DATA
JER |
® o
o® ot g
e®
?

A

X1

[Malkov and Yashunin, 2016]

Vector Search

HNSW inference

A bit more conceptually challenging is . But nowadays often preferred algorithm due to
generally better recall / performance behavior.

DATA
JER |
® o
o® ot g
e®
?

A

X1

[Malkov and Yashunin, 2016]

Vector Search

HNSW inference

A bit more conceptually challenging is . But nowadays often preferred algorithm due to
generally better recall / performance behavior.

DATA
JER |
® o
o® ot g
e®
?

A

X1

[Malkov and Yashunin, 2016]

Vector Search

HNSW inference

A bit more conceptually challenging is . But nowadays often preferred algorithm due to
generally better recall / performance behavior.

DATA
JER |
® o
o® ot g
e®
?

A

X1

[Malkov and Yashunin, 2016]

Vector Search

HNSW inference

A bit more conceptually challenging is . But nowadays often preferred algorithm due to
generally better recall / performance behavior.

DATA
JER |
® o
o® ot g
e®
?

A

X1

[Malkov and Yashunin, 2016]

Vector Search

HNSW inference

A bit more conceptually challenging is . But nowadays often preferred algorithm due to
generally better recall / performance behavior.

DATA
JER |
® o
o® ot g
e®
?

A

X1

[Malkov and Yashunin, 2016]

Vector Search o

HNSW inference

A bit more conceptually challenging is . But nowadays often preferred algorithm due to
generally better recall / performance behavior.

BUT:

- Graph construction can be very compute
and memory intensive

- Difficult to parallelize and distribute

- Large top k with filters tricky

[Malkov and Yashunin, 2016]

Vector Search o

HNSW inference

A bit more conceptually challenging is . But nowadays often preferred algorithm due to
generally better recall / performance behavior.

BUT:

- Graph construction can be very compute
and memory intensive

- Difficult to parallelize and distribute

- Large top k with filters tricky

[Malkov and Yashunin, 2016]

Vector Search

HNSW inference

“Large top k with filters tricky”
For a query point q :

What points are close by ?

Wikipedia - OpenAl embeddings
1536d -> 2d projection (UMAP for 100k subset)

X2

10 A

X1
[Dataset generated by S. Sturges, 2023]
(https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings)

https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings

Vector Search

HNSW inference

“Large top k with filters tricky”

For a query point q : Wikipedia - OpenAl embeddings
1536d -> 2d projection (UMAP for 100k subset)

10 ~ LY .

What points are close by ? X2

— |VFFLAT of main interest for this talk.

epsilon oo

T T T T T
0 5 10 15 20

X1
[Dataset generated by S. Sturges, 2023]
(https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings)

https://www.kaggle.com/datasets/stephanst/wikipedia-simple-openai-embeddings

Vector Search

Approximate Nearest Neighbour search

Remark:
There are also newer, more specialized, algorithms which gain in popularity.

For example:

Applicable to large scale problems (beyond RAM). [Subramanya et al., 2019]

HNSW variant optimized for GPU execution. [Ootomo et al., 2024]

Vector Search

Postgres implementation

Most well-known and popular: pgvector
(https://github.com/pgvector/pgvector)

Introduces new PG type (vector), distance operators acting on vectors, and can build indices for
vector columns.

Exact, and or IVFFLAT based approximate vector search. Many different metrics, but here we
are mainly interested in euclidean distance (<->) and cosine distance (<=>).

Query example:

select * from table where embedding <-> [...]' < 10 order by embedding <-> ‘[...]’ limit 270000

https://github.com/pgvector/pgvector

Vector Search

Postgres implementation

Most well-known and popular: pgvector
(https://github.com/pgvector/pgvector)

Introduces new PG type (vector), distance operators acting on vectors, and can build indices for
vector columns.

Exact, and or IVFFLAT based approximate vector search. Many different metrics, but here we
are mainly interested in euclidean distance (<->) and cosine distance (<=>).

Query example:
select * from table where embedding|<-> [[...]' < 10 order by embedding <-> ‘[...]’ imit 270000

/ R \ Vector type
for example: [3,0.1,-1.2,5]’

Column of vector type Metric operator (L2)
acting on vector types

https://github.com/pgvector/pgvector

Vector Search

Postgres implementation

Most well-known and popular: pgvector
(https://github.com/pgvector/pgvector)

Introduces new PG type (vector), distance operators acting on vectors, and can build indices for
vector columns.

Exact, and or IVFFLAT based approximate vector search. Many different metrics, but here we
are mainly interested in euclidean distance (<->) and cosine distance (<=>).

Query example: Index on vector column

select * from table where|embedding |<-> ‘[...]' < 10 order by embedding <-> ‘[...]’ limit 270000

Reduce number of required distance calculations via “index”/ approx vector search.
(Worst case: For all rows)

https://github.com/pgvector/pgvector

Vector Search

Postgres implementation

Newcomer: pgvectorscale (timescale)
(https://github.com/timescale/pgvectorscale/)

DiskANN based approximate vector search.

Offers euclidean distance, cosine distance and inner product.

Interesting feature: Label filter push down into index scan.

https://github.com/timescale/pgvectorscale/

Vector Search

Postgres implementation

Newcomer: pgvectorscale (timescale)
(https://github.com/timescale/pgvectorscale/)

DiskANN based approximate vector search.

Offers euclidean distance, cosine distance and inner product.

Interesting feature: Label filter push down into index scan.

Note:

Mentioned only for completeness. In this talk | will not dive further into pgvectorscale.

https://github.com/timescale/pgvectorscale/

sednai

... PGVECTOR ...

Vector Search

pgvector

PostgreSQL plan generation (simplified)

FROM

l

WHERE

l

ORDER BY

l

LIMIT

sednai

Vector Search

pgvector

PostgreSQL plan generation (simplified)

FROM «

l

WHERE

l

ORDER BY

|

LIMIT

Sequential or index scan
(depending on cost estimate)

sednai

Vector Search

pgvector

PostgreSQL plan generation (simplified)

FROM

l

WHERE

l

ORDER BY

|

LIMIT

A

Pgvector implements INDEXAM
(Index Access Method Interface)

Vector Search

pgvector

PostgreSQL plan generation (simplified)

Pgvector implements INDEXAM
FROM (Index Access Method Interface)

i |

A

WHERE

Core index functions:

l ambuild
aminsert

ORDER BY ambeginscan

amrescan

l amendscan
amagettuple

LIMIT

Vector Search

pgvector

PostgreSQL plan generation (simplified)

Pgvector implements INDEXAM

FROM - (Index Access Method Interface)
s l l
 WHERE

One or both will . .
Core index functions:

be pushed ;

down to :

INDEXAM : ambuild

implementation : aminsert

ORDER BY ambeginscan

More on this later ... amrescan
amendscan
amagettuple

LIMIT

Vector Search

pgvector

PostgreSQL plan generation (simplified)

Pgvector implements INDEXAM

FROM - (Index Access Method Interface)
s l l
 WHERE

One or both will . .
Core index functions:

be pushed ;

down to :

INDEXAM : ambuild

implementation : aminsert

~ ORDER BY ambeginscan

More on this later ... l amri eSdCéln
amendscan)
amgettuple ll;‘ost%reSQL execution ROW

LIMIT - ase

Has to return /temPointerData on
each call (xs_heaptid)

Vector Search

sednai
pgvector
PostgreSQL plan generation (simplified)
- Pgvector implements INDEXAM
FROM o (Index Access Method Interface)
4 l l
One or both will o WH ERE
be pushed : Core index functions: Pointer to an item within a
do Vf/) n to : disk page of a known file
: : (block + offset)
INDEXAM : ambuild
implementation L aminsert
ORDER BY ambeginscan
More on this later ... amrescan
amendscan PostareSOL tion ROW
amgettuple ostgreSQL execution
LIMIT based

Has to return|/temPointerData on
each call (xs_heaptid)

Vector Search

pgvector

PostgreSQL plan generation (simplified)

- Pgvector implements INDEXAM
FROM o (Index Access Method Interface)

A A
P l First call:

Pgvector performs approx

WHERE vector search.

Core index functions:

One or both will

be pushed :
down to : Subsequent calls:
INDEXAM : ambuild Found ltemPointers are
implementation L aminsert returned.
ORDER BY ambeginscan T
More on this later ... amr esdcan
amendscan .
PostgreSQL execution ROW

amagettuple

LIMIT based

Vector Search

pgvector

What about performance ?
Hardware:

- 19-13900H + RTX 4070 [35W]
Software:

- Ubuntu 22.04

- gcc/g++-14; icpx

- Python 3.10.12 + psycopg?2 2.9.6
- Standard Postgres v15

(no special compile flags besides -g)

- PGvector master on Mar 24, 2025
(commit 05182479a2a62e04300386b4dal18be02fch819b5)
(compiled with -O3 -march=native -g)

Vector Search

pgvector

What about performance ?
Settings:

- Queried locally via python+psycopg?2

(on persistent connection)

- IVFFLAT: 200 clusters
- Recall computation for IVFFLAT via variation of # probes.

(Smallest # probes for fixed recall + median at fixed recall)

- Recall computation for HNSW via variation of ef_search parameter.

(Smallest parameter for fixed recall + median at fixed recall)

Vector Search

pgvector

What about performance ?
Settings:

- Queried locally via python+psycopg?2

(on persistent connection)

- IVFFLAT: 200 clusters
- Recall computation for IVFFLAT via variation of # probes.

(Smallest # probes for fixed recall + median at fixed recall)

- Recall computation for HNSW via variation of ef_search parameter.

(Smallest parameter for fixed recall + median at fixed recall)

Variation in discrete steps

IVFFLAT: 10 probes given by cutting points of [1,100] into equal size ranges
HNSW: [100, 200,..., 1000]

Vector Search

pgvector

What about performance ?

GIST-960 dataset [Jeégou, Douze and Schmid, 2011] (http://corpus-texmex.irisa.fr/)

- 1M vectors

- 960d

- 1k test vectors

- Pre-computed 100 nearest neighbors (euclidean metric)

(Vectors given by global GIST descriptors of image dataset. GIST summarizes the gradient information for different parts of an image.)

DEEP1B dataset [Babenko and Lempitsky, 2016] (https://www.tensorflow.org/datasets/catalog/deeplb)

- 10M vectors (subset of 1B)

- 96d

- 10k test vectors (we use first 1k)

- Pre-computed 100 nearest neighbors (cosine metric)

(Vectors given by PCA of 1B image embeddings produced as outputs from the last fully-connected layer of a GoogLeNet CNN model)

http://corpus-texmex.irisa.fr/
https://www.tensorflow.org/datasets/catalog/deep1b

Vector Search

pgvector

What about performance ?

queries/s

mean # probes

GIST-960, test set queries

« ivfflat (pgvector)

% e . - . . .
30 A T LT .
e w s e, . .
. ™ L . *e e
20 . ° .
.
10 A o
. M
0 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
30 4
20 A
10
01— T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

recall

queries/s

mean # probes

DEEP1B, test set queries (1k)

W & L
o o o
1 1 1

=N
o © o
1 1 1

« ivfflat (pgvector)

254

201

15 A

10 A

0.0

0.2 0.4 0.6 0.8 1.0
recall

Vector Search

pgvector

What about performance ?

o GIST-960, test set queries DEEP1B, test set queries (1k)
L]
. s hnsw (pgvector) . " o
. s, . - - - -
50 - - . L] . * L] . . -
0 . v . L] 60 4 . . .
W s e " " n . . ¢
i) L . .y ® i . . - e
= 40 L L] - . g . - ..
] . T * L . LR
g. . .a® * . g- a0 4 . 8 . LN] . - -
30 + i . . L] -, . *
. . - - e
-, -
% 00l s hnsw (pgvector)
20 E T T T T T T T ek had T 20 T T b b T T T
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.2 0.4 0.6 0.8 10
500 A
= 500 1
o T 400
@ 400 @
ui L1
£ 300 1 %' 300
o =
g 200+ 3 200 -
E
1004, . : ; . . ; . 100 1
T T T T T
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.2 0.4 0.6 0.8 1.0

recall
recall

Vector Search

pgvector

What about performance ?

GIST-960, test set queries

DEEP1B, test set queries (1k)

85 . . « ivfflat (pgvector) 75 .
80 - . = hnsw (pgvector) 70 ° U . .
75 A L =" .
70 .. .t . o 65 1 . . .
. 60 bd - L4
65 - . . ‘
60 t : s1 - . .t .
L]
55 4 ., 50 1 . .
L] - - - -
@ 50 . 2 % . I R C
8 45 - . L 407 . .
— - .
G 40 - . ~ 331 . ’ .
o B (=2 i s e LI - - . -
35 L. - R .'.... 30 W .
30 1 '... " L . . . -, : 25 - . ..'..
25 4 L] - L] - g - - o .
. oW °® . -, ..o.. .-'.o. 20 1 - et Sees
20 A & L] 15 -... " s o..o -
15 4 . . . LA . b .o...
10 . T w
10 1 . 5 « ivfflat (pgvector) . .
517 T e e od * hnsw (pgvector) P e,
0-
T T T T T T T T T

00 01 02 03 04 05 06 07 08

Vector Search

pgvector

What about performance ?

queries/s

a0

GIST-960, test set queries

85 A
80
75 A
70 A
65
60
55 A
50 A
45 A
40 A
35 A
30
25
20 A
15 4
104
5_

.

ivfflat (pgvector)
hnsw (pgvector)

0

0.80 0.8

T T T T T T T T T
0.84 0.86 088 090 092 094 096 098 1.00

recall

~ 9x

queries/s

DEEP1B, test set queries (1k)

80
75 A
70 A
65
60
55 A
50 A
45 A
40 -
35 A
30 A
25 A
20 A
15 4
10 4
5 4

« ivfflat (pgvector)
« hnsw (pgvector)

........................ Mg P B g g g g

0

0.80 0.82

0.84 086 088 090 092 094 096 098 100

recall

~ 19x

Vector Search

pgvector (ivfflat)

What about performance ?

GIST-960 dataset (1M, 960d)

Ivfflat inference perf analysis

- WHWNWU‘\I o
w

ext4_file_read_iter

o
©
g
a
)
£
o
= |

x64_sys_call

u C
[vector_2_squared.. |[|
(FunctionCallzColl " ReadBufferExtended

c
9
e}
<
3
L
g9
568
Mm n
gLis
ew..B
xe~Qo

[Generated with FlameGraph] (https://github.com/brendangregag/FlameGraph)

https://github.com/brendangregg/FlameGraph

Vector Search

vector (iviflat

What about performance ?

Ivfflat inference perf analysis

)

©

(o]

()}

=

o

—i

N

o N
(]

2 =

e 3 @

© md

m w.%

i

_ 04

n [

Ll

]

a)

Distance calculation

m
m

[Generated with FlameGraph] (https://github.com/brendangregag/FlameGraph)

https://github.com/brendangregg/FlameGraph

Vector Search

pgvector (ivfflat)

What about performance ?

- ReadBuffers
- Tuplesort
- Distance calculation

Portions Copyright (c) 1996-2024, PostgresQL Global Development Group
Portions Copyright (c) 1994, The Regents of the University of California

Pernission to use, copy, modify, and distribute this software and its
docunentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this
paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

License of pgvector, 2025

sednai
buf = ReadBufferExtended(scan->indexRelation, MAIN_FORKNUM, searchPage, RBM_NORMAL, so->bas);
LockBuffer(buf, BUFFER_LOCK_SHARE);
page = BufferGetPage(buf);
maxoffno = PageCetMaxOffsetNumber(page);

for (OffsetNumber offno = FirstOffsetNumber; offno <= maxoffno; offno = OffsetNumberNext(offno))

{
IndexTuple itup;

Datum datum;
bool isnull;
ItemId itemid = PageGetItemId(page, offno);

itup = (IndexTuple) PageGetItem(page, itemid);
datum = index_getattr(itup, 1, tupdesc, &isnull);

/‘k
* Add virtual tuple
*
* Use procinfe from the index instead of scan key for
* performance
*/
ExecClearTuple(slot);
slot->tts values[@] = so->distfunc(so->procinfo, so->collation, datum, value);
slot->tts_isnull[@] = false;
slot->tts values[1] = PointerGetDatum(&itup->t_tid);
slot->tts_isnull[1] = false;
ExecStoreVirtualTuple(slot);

tuplesort_puttupleslot(so->sortstate, slot);

} pgvector github, ivfscan.c, 2025

sednai

... HACKING PGVECTOR ...

Vector Search L)

pgvector hack (ivfflat)

Can we do better ? (https://github.com/Sednai/pgvector/tree/AERO v2)

Keep index data persistent in Non-Postgres controlled memory:

- No but continuous arrays
- No

- Possibility for better optimization for hardware

RHEAYH

HPC and Al processor

Designed with

|filemap_read 1l

80 arm® Neoverse VI cores

s
IFunctionCall2Coll-=s - ReadBufferExtended

]
| | ext4_file_read_iter
] visrad
i _x64sys preadsd]

with 2 x 256 SVE each - - - -

| | h) L [dosyscall 64]

I II‘ | ‘;Ihash I||H\| ||‘ Ib _pread I|
4 x HBM 4 x DDR5 interfaces 1 1. |\l\

| -I BufferAlloc mgrre ad [}

|

|

|

1]

|

postgres

https://github.com/Sednai/pgvector/tree/AERO

Vector Search o

pgvector hack (ivfflat)

Can we do better ?| (https://github.com/Sednai/pgvector/tree/AERO_v2)

Keep index data persistent in Non-Postgres controlled memory:

- No but continuous arrays
- No TupleSort

- Possibility for better optimization for hardware

— “In-memory vector database”
(instead of in-memory buffer db) Proof-of-concept

for
a next generation pgvector

https://github.com/Sednai/pgvector/tree/AERO

Vector Search

pgvector hack (ivfflat)

Implementation

Own Postgres background process with task queue in shared memory.

BackgroundWorker worker;

BackgroundWorkerHandle *handle;

BgwHandleStatus status;

pid_t pid;

memset(&worker, 0, sizeof(worker));

worker.bgw_flags = BGWORKER_SHMEM_ACCESS | BGWORKER_BACKEND_DATABASE_CONNECTION;

worker.bgw_start_time = BgWorkerStart_RecoveryFinished;

worker.bgw_restart_time = BGW_NEVER_RESTART; // Time in s to restart if crash. Use BGW_NEVER_RESTART for no restart;
char* WORKER_LIB = GetConfigOption("ivfflat.lib",true,true);

sprintf(worker.bgw_library_name, WORKER_LIB);
sprintf(worker.bgw_function_name, "pgv_gpuworker_main");

snprintf(worker.bgw_name, BGW_MAXLEN, "%s",buf);
worker.bgw_notify_pid = MyProcPid;

if (!RegisterDynamicBackgroundWorker(&worker, &handle))
elog(ERROR, "Could not register background worker");

status = WaitForBackgroundWorkerStartup(handle, &pid);

Added bonus:

Vector Search

pgvector hack (ivfflat)

Implementation

Own Postgres background process with task queue in shared memory.

Re-routing the index tuple scan as task to background worker during scan:

/*
* Fetch the next tuple in the given scan
*/
bool
ivfflatgettuple(IndexScanDesc scan, ScanDirection dir)
/*
Exec task
—_— > */
dlist_node* dnode = dlist_pop_head_node(&worker_head->exec_list);

own process worker_exec_entry* entry = dlist_container(worker_exec_entry, node, dnode);

SpinLockRelease(&worker_head->lock);
load_index(entry->nodeid, entry->tupdesc, entry->usetriangle);

/| Compute
if(!entry->usegpu) {
entry->returns = exec_query_cpu(entry, worker_head);

}

else

Vector Search

pgvector hack (ivfflat)

Implementation

For an indexed table, we store the index vectors and corresponding location info (/temPointerData)
as raw native arrays in Non-Postgres memory.

(The data will be persistent over the lifetime of the background process. Have not implemented active memory management yet. Pgvector background process will crash if you
run out of memory !)

/*

* Fetch the next tuple in the given scan

*/

bool

ivfflatgettuple(IndexScanDesc scan, ScanDirection dir)

/*
Exec task
—_—> */
dlist_node* dnode = dlist_pop_head_node(&worker_head->exec_list);
own process . .
worker_exec_entry* entry = dlist_container(worker_exec_entry, node, dnode);

SpinLockRelease(&worker_head->lock);
load_index(entry->nodeid, entry->tupdesc, entry->usetriangle); C/C+ +

/| Compute
if(!entry->usegpu) {
entry->returns = exec_query_cpu(entry, worker_head);

}

else

Vector Search

pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and distance sort.
Location infos are returned to the user process.

(More precisely, the corresponding page number and ItemPointerData are returned.)

/*

* Fetch the next tuple in the given scan

*/

bool

ivfflatgettuple(IndexScanDesc scan, ScanDirection dir)

/*
Exec task
—_—> */
dlist_node* dnode = dlist_pop_head_node(&worker_head->exec_list);
own process . .
worker_exec_entry* entry = dlist_container(worker_exec_entry, node, dnode);

SpinLockRelease(&worker_head->lock);

load_index(entry->nodeid, entry->tupdesc, entry->usetriangle);

/| Compute
A Fllanterir ~ismmammi)\ [
tEentry—usegpu—t
entry->returns = exec_query_cpu(entry, worker_head); C/C++

1
J

else

Vector Search s

pgvector hack (ivfflat)
What about performance ?

Note: _ _
GIST-960 inference perf analysis

- No special tricks |

- No multi-threading |

- No manual vector instructions |

- No HBM memory ll

std::qsort

fi }
SO <o pare i

Vector Search

pgvector

What about performance ?

GIST-960, test set queries DEEP1B, test set queries (1k)
140
1304 ° « ivfflat (pgvector) 150 1 . « ivfflat (pgvector)
120 . « ivfflat (bgw-cpu) 140 « ivfflat (bgw-cpu)
) 1304 *
o4 7 120 °
100 A 110 4
90 R 100 1
L] -
@ 80 - % Lo e g 90 R
g 70 - e e .o] 80 o.-. -
o - - = i
qg)- 60 - . Y eto . . Og.J- 70 . °." .
50 e T : 60 1 T v -
]
‘o st N 50 * . R . .. - -
40 7 . * 40 1 *te ..' .O 5:.0- L . .
301 e % % tie et . : . . « «**%% %
. S, Tt e ..,.o-..q.o...-.. ...; . 30 4 ,........ o e . i P S
20 - . " e "... . '0.0.. L °
. 204 . e®%ss ".u..o."i.o“.'o -
10 1 * . [.'...M. 10 1 * * - ﬁ...%"...-o
. e ""ﬁm - . ..:m
0 N 0 -
T T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10

Vector Search

pgvector

What about performance ?

queries/s

GIST-960, test set queries
20

19 - s ivfflat (pgvector)
18 « ivfflat (bgw-cpu)
17 A
16
15
14
13 1
12 1
114
10 1
a4
B_
71 - . .

6_ . L]
5_
4 1 - * .
39t LU N B B L. .
2 f e
l_
0

0.80 082 084 086 088 090 092 094 096 098 100
recall

~2X

queries/s

20

DEEP1B, test set queries (1k)

19
18
17 A
16
15 A
14 A
13 4
12 A
11 A
109 =« *
g
8
7
6

T - f B es ns 5e 5 o S S e e e e R A

49
3

24 TR, S JRS

1

« ivfflat (pgvector)
» ivfflat (bgw-cpu)

~ 2.5x

0 T
0.80 0.8

recall

T T T T T T T T T
0.84 086 0.88 090 092 094 096 098 1.00

Vector Search

pgvector hack (ivfflat)

Can we do better ?

Since we have already a setup to keep index persistent in Non-Postgres memory, we
can easily go one step further and offload the index and compute to a !

—> Compute of distances and sort on device.

Return only sorted index ids from device
(Mapping to location info on CPU)

Vector Search o

pgvector hack (ivfflat)

Can we do better ?

Since we have already a setup to keep index persistent in Non-Postgres memory, we
can easily go one step further and offload the index and compute to a !

—> Compute of distances and sort on device.

Return only sorted index ids from device
(Mapping to location info on CPU)

Example: Nvidia A100

(for FP32 vectors of 100d that is enough to keep >200M index points persistent)

sednai

... GPU ACCELERATED VECTOR SEARCH ...

Vector Search

pgvector hack (ivfflat)

Implementation

For an indexed table, we store now the index vectors on a device.

(The data will be persistent over the lifetime of the background process. Have not implemented active memory management yet. Background process will crash if you run out of
memory !)

/*

* Fetch the next tuple in the given scan

*/

bool

ivfflatgettuple(IndexScanDesc scan, ScanDirection dir)

/*
Exec task
—_—> */
dlist_node* dnode = dlist_pop_head_node(&worker_head->exec_list);
own process . .
worker_exec_entry* entry = dlist_container(worker_exec_entry, node, dnode);

SpinLockRelease(&worker_head->lock);

load_index(entry->nodeid, entry->tupdesc, entry->usetriangle); C++ / CUDA
/1 compute (essentially one big cudaMemcpy)

if(!entry->usegpu) {
entry->returns = exec_query_cpu(entry, worker_head);

}

else

Vector Search

pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and distance sort on
device. Only ordered index ids are returned from GPU.

/*
* Fetch the next tuple in the given scan
*/
bool
ivfflatgettuple(IndexScanDesc scan, ScanDirection dir)

—_— > load_index(entry->nodeid, entry->tupdesc, entry->usetriangle);
own process
// Compute
if(lentry->usegpu) {
entry->returns = exec_query_cpu(entry, worker_head);

}
else
#ifdef GPU
entry->returns = exec_query_gpu(entry, worker_head); C:-F-p / (:('[[)/q
#else
entry->returns = exec_query_cpu(entry, worker_head); (t:LIE;t()I77 I<E?r7769l5i)

#endif

Vector Search

pgvector hack (ivfflat)

What about performance ?

GIST-960, test set queries DEEP1B, test set queries (1k)
340

260 - . . . * .« ivfflat (bgw-cpu) 320 4 . . » = ivfflat (bgw-cpu)

240 A .. . L. cove --... . _hnsw (pgvector) 300 4 . . . hnsw (pgvector)

220 40. - ..,..- ot . . . *, = ivfflat (bgw-gpu) ag04 . . L e .' ., . o ivfflat (bgw-gpu)

% o, i . " .
200 .'o . . : . R 260 . ‘ . ‘ - e ., 0.0 .
- L]
1804 ° . S
L]

160 + « " 200 4 " . «* o.. oo... .
gi L] w L]
21404 . " § 1807 . . . " ‘
g 1204 ° . T 160 .
% 1004 % . 3 140 .

. . 1204 , * .

804 = "". '.. CTC I . o, "0 .“.5-.'-.5.. 100 A -

60 - i N - 801 we’. e ‘ L

40 - :‘ '....--‘,.,g.‘-..p...,_ o, e 60 '..-'..°.. ".° :' =T .'. ° -.' °~ . "-,“.

[] L - - L O- - L
20 - C e e T :{; 1 . R .'.:s.".'l.m:l . .-.:u. " g
o, - L] L] .
. M - *
0 i -
T T T T T T T T T T T 0 T T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 10

Vector Search

pgvector hack (ivfflat)

What about performance ?

queries/s

GIST-960, test set queries

95 4 « ivfflat (bgw-cpu)
90 A » hnsw (pgvector)
» ivfflat (bgw-gpu)

0 T T T T T T T T T T
0.80 082 084 086 088 090 092 094 096 098 1.00
recall

~ 3.2x

~12x

queries/s

DEEP1B, test set queries (1k)

120 R
« ivfflat (bgw-cpu)
1101 . * « hnsw
100 - . . « ivfflat (bgw-gpu)
90 - .
L]
B lecscansnsnssnassmnaniaiasssasssnnnnanansnsndns L
.
.
70
L]
60 - . - .
L]
01 ., i * ..
S I
30 1 ‘. L
.
20
.
.
109 = R
. .'l".bb'.d.....
0 T T T T T T T T T T
0.80 082 084 086 088 090 092 094 096 098 100

recall

~2.2X

~ 16x

Vector Search

pgvector hack

Since we have now a basic vector search PG background worker:

Hack in Nvidia RAFT and cuVS library ?
(https://github.com/rapidsai/raft) (https://github.com/rapidsai/cuvs)

- Fullstack
(HNSW, IFFLAT, CAGRA, DiskANN; Index build + inference)

- As GPU backend available for FAISS, Milvus, Redis and others ...
(‘according to https://big-ann-benchmarks.com/neurips23_slides/NVIDIA_Corey.pdf)

https://github.com/rapidsai/raft
https://github.com/rapidsai/cuvs
https://big-ann-benchmarks.com/neurips23_slides/NVIDIA_Corey.pdf

Vector Search

pgvector hack

Since we have now a basic vector search PG background worker:

Hack in Nvidia RAFT and cuVS library ?
(https://github.com/rapidsai/raft) (https://github.com/rapidsai/cuvs)

- Fullstack
(HNSW, IFFLAT, CAGRA, DiskANN; Index build + inference)

- As GPU backend available for FAISS, Milvus, Redis and others ...
(‘according to https://big-ann-benchmarks.com/neurips23_slides/NVIDIA_Corey.pdf)

May be a low effort way to get something new and complete into PG ...

BUT: Do we really want to become vendor dependent ?

https://github.com/rapidsai/raft
https://github.com/rapidsai/cuvs
https://big-ann-benchmarks.com/neurips23_slides/NVIDIA_Corey.pdf

£

oneAPI ®

NEE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the

open-source software ecosystem required to not only improve the efficiency of the EPI hardware but
also accelerate and ease the processor’s integration into the

Heterogeneous hardware

PROBLEM: Divers set of accelerators from different vendors (NVIDIA, AMD, INTEL,...)

5. r PIERER @ s &7 UNIVERSITE @)
FEH UBITECH SIPE/RL INNOVETION Reﬁat Q’EWQHMTMHW UNWER%DI . g\fmual Open Systems 'ﬁf DE GENEVE Sedno\'

MANCHESTER

C codeplay’

oneAPI ®

NE2RE
Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the
open-source software ecosystem required to not only improve the efficiency of the EPI hardware but

also accelerate and ease the processor’s integration into the

Heterogeneous hardware

Open, cross-industry, standards-based, unified, multi-architecture, multi-
vendor programming model, adopted by Intel.

fasads.

oneAPlI

MANCHESTER

£ :: i PIERER @\ ¢ (@7 UNIVERSITE @)
ﬁ} - UBITECH . SIPE/'RL INNOVETION Reﬁat JE’FQHMT"H_W @ }2 Virtual Open Systems ﬂf DE GENEVE Sedno‘

C codeplay’

UNIVERSITA DI PISA

oneAPI ®

NERE
Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by developing the
open-source software ecosystem required to not only improve the efficiency of the EPI hardware but

also accelerate and ease the processor’s integration into the

Heterogeneous hardware

oS Open, cross-industry, standards-based, unified, multi-architecture, multi-
*2e vendor programming model, adopted by Intel.
%
%
Intel oneAPI base toolkit plugins for NVIDIA and AMD
nte it plugi
oneAPI .\
HIVBITECH (ISPERL AkESinoy & OFORTH . & Guopmswe @@pymrt @ [SHEE | ©codeplay’

Vector Search L)

pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and distance sort on
device. Only ordered index ids are returned from GPU to CPU process.

/*
* Fetch the next tuple in the given scan
*/
bool
ivfflatgettuple(IndexScanDesc scan, ScanDirection dir)

S
own process

load_index(entry->nodeid, entry->tupdesc, entry->usetriangle);

// Compute
if(lentry->usegpu) {
entry->returns = exec_query_cpu(entry, worker_head);

}
else
#ifdef GPU
entry->returns = exec_query_gpu(entry, worker_head); C++ / oneAPI
#else
entry->returns = exec_query_cpu(entry, worker_head); ((:Llf;t()f77 I<6917769IE;)

#endif

Vector Search

pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and distance sort on
device. Only ordered index ids are returned from GPU to CPU process.

void calc_squared_euclidean_distances(float* M, float* V, sort_item* C, int* p, int N, int L, int probe) -

Q->parallel_for(range<1>(N),
[=]1(id<1> k){
int pos = *p;

OTM
& float tmp = 0;
e for(int 1 = 0; 1 < L; 1++) {
& tmp += (M[L*k#i] - V[i])*(M[L*k+i] - V[i]);
(e }

OneAPI C[pos+k].distance = tmp;

C[pos+k].probe = probe;
C[pos+k].pos = k;

s

Q->wait();

Vector Search

pgvector hack (ivfflat)

What about performance ?

With OpenCL CPU oneAPI backend (all cores)

a0 GIST-960, test set queries DEEP1B, test set queries (1k)
1304 ° = ivfflat (bgw-cpu) 150 . = ivfflat (bgw-cpu)
0 e . « ivfflat (bgw-cpu-opencl) N » ivfflat (bgw-cpu-opencl)
04 tee . 130 A - . °,
7 L] - L]
100 | L] . 5.~ .. L . - 120 | -
. L L 101 °, . ,
i .
ot . 3. L) -...- . 100 7 : ..o' o v " .
@ 804 o % . L w 904 A R
A e w . . W . . " e
2 70 . . . %oe . L 804 et . - . " L
q:.:, . o'.'-. o . ® e T 70 1 - - LI '. .
g 601 . . e - 3 . ° ‘. : - e
ag . L] . 60 4 . . * " .
5() b LY L ... ° ' . L]
| . %o 50 v, e e .
40 . ‘e . - .. -
04 40 + LI . e,
‘ L .n'- 30 A . - .". . ® .".o.. '.--'. .
. . . .
204 * "o 'ny.--. "- 204 .o. . '-..~‘..
10 1 o, | tosh,
.. -..-..omn-. 10 " el
Porrstange
04 0
T T T T T T T T T T T
0.0 0.1 02 0.3 04 0.5 0.6 07 0.8 0.9 1.0 0|0 0|1 0|2 0|3 0I4 0.‘5 0I6 0‘7 OIS 0“3 lIO

Vector Search

pgvector hack (ivfflat)

What about performance ?

With OpenCL CPU oneAPI backend (all cores)

o GIST-960, test set queries DEEP1B, test set queries (1k)
- 60
5 « ivfflat (bgw-cpu) « ivfflat (bgw-cpu)
« ivfflat (bgw-cpu-opencl) 55 7 . ivfflat (bgw-cpu-opencl)
50 | 50 4
45 | 45 4 .
40 40
“!1357 5_11_35’
A vl
2 35 4 2 30 4 . .
g g
T 25 T254 . .
.
204 ° . .« 8 ® « o 204 . . ‘
""""""""""""""" """"""'.'"'.""."""'.'""""""'"""""'"‘"----‘-‘-‘-------.-------- ,,,,.,,....‘.‘.‘...................................‘
15 . . 15 v N .
. & —_ - b4 L]
o . .. 2.8x 0 - . e et ~ 3.2x
. .
5 L TP .'-l,---...'....... G fesssscsusnsssnsasasnnnans L JONU e ecaacagens .__..-..-
o T T T T w T T T T ‘ %so 0.82 084 086 0.88 090 0052 094 096 098 1.00
0.80 0.82 084 086 088 090 092 094 096 098 1.00 . - - - - - . - . . .

recall
recall

Vector Search

pgvector hack (ivfflat)

What about performance ?

GIST-960, test set queries

With Nvidia GPU oneAPI backend

DEEP1B, test set queries (1k)

300 A 500 -
280 L « ivfflat (bgw-gpu) 475 4 » . « Ivfflat (bgw-gpu)
o, "y u . . « ivfflat (bgw-gpu-sycl) 4504 ° . = . « ivfflat (bgw-gpu-sycl)
.
260 1 P U T » 4259 " S . .
o 2o, o % . . | .
240 1 T - - n.:'-:-o..'.-.'g”O 400 -° [, . . .,
220] *lae T wat el T Tl 375 | S .
e e T e e 3504 . RN ‘e .
200 " . - . 325 e P T fet e
Lisoq ° * e @300 0t ., R
ki e oov 8 2751 o T em St e e
= < . . .
5 100 1 = g 2504 ° T e "tte. ST -
“ 140 - L & 225 | R R T
. 200 e s -t LR L I
. L] L]
120 o= e 1754 s . e
100 4 ERRDA R 150 : o
. 125 - .
20 4 R . '.-:c.q,‘-. _~.~.~ 100 4;.: .
60 7 -t 75 - “n:
-y 50] .'Cf
40 | L]
T T T T T T T T T T 25 T T T T T T T T T T T
00 01 02 03 04 05 06 07 09 10 00 01 02 03 04 05 06 07 08 09 10

recall

Vector Search

pgvector hack (ivfflat)

What about performance ?

GIST-960, test set queries

With Nvidia GPU oneAPI backend

Seems the automatic kernels are not bad ...
Artefact of using unified memory ?

DEEP1B, test set queries (1k)

300
2801 .
260 - vee *e, . .
240 P M I L LY NP
220 ,-e.'-. -t
.
200 . . .
180 .

queries/s

160 . ®
140

120 | .

100 4

30 - o "

60

. « ivfflat (bgw-gpu)
« ivfflat (bgw-gpu-sycl)

queries/s

. « ivfflat (bgw-gpu)
. « ivfflat (bgw-gpu-sycl)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

recall

sednai

... ASPECIAL CASE ...

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Why ?

Core ingredient to density based clustering algorithms.

Simplified: ler
o O
O o o o
O
OC o
e

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Why ?
Core ingredient to density based clustering algorithms.

Simplified: ler

epsilon

O

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.
Why ?

Core ingredient to density based clustering algorithms.

Simplified: ler

\4

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.
Why ?

Core ingredient to density based clustering algorithms.

. o

[
>

X1

Simplified: ler

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.
Why ?

Core ingredient to density based clustering algorithms.

Simplified: ler

o O

\4

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.
Why ?
Core ingredient to density based clustering algorithms.

Simplified: ler

0 % ;

Nt

O

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.
Why ?

Core ingredient to density based clustering algorithms.

Simplified: ler

\4

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.
Why ?

Core ingredient to density based clustering algorithms.

Simplified: ler

\4

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.
Why ?

Core ingredient to density based clustering algorithms.

Simplified: ler

\4

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Why ?

Core ingredient to density based clustering algorithms.

Simplified: ler
o ©
O o ® .
°
® o
e

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Get rows within a certain distance

SELECT * FROM items WHERE embedding <-> '[3,1,2]' < 5;

Note: Combine with oroer By and LimiT to use an index
(From pgvector github README.md, 2025)

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Get rows within a certain distance /

SELECT * FROM items WHERE embedding <-> '[3,1,2]' < 5;

Note: Combine with| oroer By and LimiT to use an index
(From pgvector github README.md, 2025)

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Get rows within a certain distance

SELECT * FROM items WHERE embedding <-> '[3,1,2]' < 5;

Note: Combine with| oroer By and LimiT to use an index
(From pgvector github README.md, 2025)

PROBLEM: Very very slow ...

Vector Search

pgvector

What about performance ?

- 2M row Gaia dataset, 79 float8 features

- 40 ivfflat clusters, ivfflat.probes = 20

- Retrieve points up to a max distance from a query point (sparse return)
- After warmup

Original pgvector

Limit (cost=0.00..9416.48 rows=10000 width=16) (actual time=113.688..563.274 rows=2 loops=1)
-> Index Scan using lorenzo_attrs_idx on lorenzo (cost=0.00..569379.89 rows=604663 width=16) (actual time=113.685..563.269 rows=2 loops=1)

Order By: (attrs <-> '[-0.36719987,0.8524608,-0.5427666,-1.6615063,1.1010165,0.06038815,-0.8972259,-1.1181297,0.23769811,1.6662519,-1.}
473,-0.042955805,0.17839357,0.08050123,0.27791676,-0.425645,0.11280374,0.84778684,0.08167486,1.8496727,0.8007245,0.5793525,-0.5038844,0.2299031¢
,0.12975255,-1.9553635,0.9473572,-2.2433414,-0.30360684,0.33857238,-0.21312521,2.3237233,-0.060708717,0.339421,-2.0196183,-0.35616732,1.8636712,
749731,-1.5635711,-1.2368783,-0.96010184,-0.6722383,0.8274576,-0.7714504,-0.16363333,-0.96023947,-0.16326201,-1.0754527,-0.6974341,-2.3611114, -1
03672114,1.2685906,-0.22232309,-0.17129573,-0.30436236,-1.1221358,0.6857615, -0.60302067,0.22385728,-1.0727525,-1.6519747,-0.9824103,-1. 5251932, -
1835048,-2.293227,1.9016955, -2.8030064, -0.045054823,-0.14567287] ' : :vector)

Filter: ((attrs <-> '[-0.36719987,0.8524608,-0.5427666,-1.6615063,1.1010165,0.06038815,-0.8972259,-1.1181297,0.23769811,1.6662519,-1.5!
73,-0.042955805,0.17839357,0.08050123,0.27791676,-0.425645,0.11280374,0.84778684,0.08167486,1.8496727,0.8007245,0.5793525,-0.5038844,0.22990316,
0.12975255,-1.9553635,0.9473572,-2.2433414,-0.30360684,0,33857238,-0.21312521,2.3237233,-0.060708717,0.339421,-2.0196183,-0.35616732,1.8636712,:
49731,-1.5635711,-1.2368783,-0.96010184,-0.6722383,0.8274576,-0.7714504,-0.16363333, -0.96023947,-0.16326201,-1.0754527,-0.6974341,-2.3611114,-1.
3672114,1.2685906,-0.22232309,-0.17129573,-0.30436236,-1.1221358,0.6857615, -0.60302067,0.22385728,-1.0727525,-1.6519747,-0.9824103,-1.5251932, -
835048,-2.293227,1.9016955, -2.8030064 , -0.045054823,-0.14567287] ' : :vector) < '6'::double precision)

Rows Removed by Filter: 578577

Planning Time: 0.204 ms
Execution Time: 563.326 ms
(7 rows)

pgv2=#

Vector Search

pgvector
Why ?
Let us look with GDB what actually happens for a query of type

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 270000

by setting a breakpoint at iviscan.c:iviflatgettuple :

U O

(gdb) break ivfscan.c:353

Breakpoint 1 at @x7c106d843e7b: file src/ivfscan.c, line 358.
(gdb) ¢

Continuing.

Breakpoint 1, ivfflatgettuple (scan=0x60700e9406f8, dir=ForwardScanDirection) at src/ivfscan.c:360

360 if (so->first)

(gdb) p* scan

$1 = {heapRelation = 0x7c106d7925e8, indexRelation = @x7c106d796818, xs_snapshot = 0x60700e8a8a68, numberOfKeys = @, numberOfOrderBys = 1, keyData = @x0,
orderByData = 0x60700e940808, xs_want_itup = false, xs_temp_snap = false, kill_prior_tuple = false, ignore_killed_tuples = true, xactStartedInRecovery = false,
opaque = Ox60700e940898, xs_itup = 0x0, xs_itupdesc = Ox@, xs_hitup = Ox0, xs_hitupdesc = 0x0, xs_heaptid = {ip_blkid = {bi_hi = @, bi_lo = 8680}, ip_posid = 4},
xs_heap_continue = false, xs_heapfetch = @x60700e94089a8, xs_recheck = false, xs_orderbyvals = @x0, xs_orderbynulls = 0x0, xs_recheckorderby = false,
parallel_scan = 0x0}

(gdb) I

Vector Search

pgvector
Why ?
Let us look with GDB what actually happens for a query of type

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 270000

by setting a breakpoint at iviscan.c:iviflatgettuple :

M g e e iy e e e

(gdb) break ivfscan.c:353

Breakpoint 1 at @x7c106d843e7b: file src/ivfscan.c, line 358.
(gdb) ¢

Continuing.

Breakpoint 1, ivfflatgettuple (scan=0x60700e9406f8, dir=ForwardScanDirection) at src/ivfscan.c:360

360 if (so->first)

(gdb) p*

$1 = {hez ion = Ox7c106d7925e8, indexRelation = @x7c106d796818, xs_snapshot = Ox60700e8a8a68, numberOfKeys = 0, |numberOfOrderBys = 1, keyData = 0x0,
orderByData = 0x60700e940808, xs_want_itup = false, xs_temp_snap = false, kill_prior_tuple = false; —d —tuples = true, xactStartedInRecovery = false,
opaque = OX60700e940898, xs_itup = 0x0, xs_itupdesc = Ox@, xs_hitup = Ox0, xs_hitupdesc = 0x0, xs_heaptid = {ip_blkid = {bi_hi = @, bi_lo = 8680}, ip_posid = 4},

nue = false, xs_heapfetch = 0x60700e9409a8, xs_recheck = false, xs_orderbyvals = @x0, xs_ord
= Ox0}

rbynulls = @x@, xs_recheckorderby = false,

. \

naescanbese No scan keys are pushed down !

Vector Search

pgvector

ExeclnitBuildScanKeys: quals are Null
Why no scan keys ? /
We have to dig deeper iss_NumScanKeys = 0 already in IndexScanState

(gdb) bt
ivfflatgettuple (scan =0x60700e9406f8, dir=ForwardScanDirection) at src/w

#1 0xP00060700c44b319 in index_getnext_ tld (scan=0x60700e94068, dlrec on=ForwardScanDirection) at indexam.c:575

#2 0Ox000060700c44b529 in index_getnext_slot (scan= @x6@700e94@6f8 direction=ForwardScanDirection, slot=0x60700e9586d0) at indexam.c:667

#3 Ox000060700c6b234d in IndexNextWithReorder (node=0x60700e958430) at nodeIndexscan.c:264

#4 Ox000060700c68ad18 in ExecScanFetch (node=0x60700e958430, accessMtd=0x60700c6b2158 <IndexNextWithReorder>, recheckMtd=0x60700c6b2675 <IndexRecheck>)
at execScan.c:132

#5 0x000060700c68adbd i 79700958430, accessMtd=0x60700c6b2158 <IndexNextWithReorder>, recheckMtd=0x68700c6b2675 <IndexRecheck>) at execScan.c:198

#6 Ox000060700c6b2b73 1 te= Gx60760e958430) at nodeIndexscan.c:533

#7 Ox000060700c686cce ir node=0x60700e958430) at execProcnode.c:464

#8 Ox000060700c6b5207 in ExecProcNode (node 0x60700e958430) at ../../../src/include/executor/executor.h:262

#9 Ox000060700c6b53f7 in ExecLimit (pstate=0x60700e958140) at nodelLimit.c:96

#10 Ox000060700c686cce in ExecProcNodeFirst (node=0x60700e958140) at execProcnode.c:464

#11 Ox000060700c67b20a in ExecProcNode (node=0x60700e958140) at ../../../src/include/executor/executor.h:262

#12 Ox000060700c67dac5 in ExecutePlan (queryDesc=0x60700e965c68, operation=CMD_SELECT, sendTuples=true, numberTuples=0, direction=ForwardScanDirection,
dest=0x60700e9531e0) at execMain.c:1640

#13 Ox000060700c67b71c in standard ExecutorRun (queryDesc=0x60700e965c68, direction=ForwardScanDirection, count=0, execute_once=false) at execMain.c:362

#14 Ox000060700c67b621 in ExecutorRun (queryDesc=0x60700e965c68, direction=ForwardScanDirection, count=0, execute once=false) at execMain.c:311

#15 Ox000060700c8b9b66 in PortalRunSelect (portal=0x60700e8f4328, forward=true, count=0, dest=0x60700e9531e0) at pquery.c:922

#16 Ox000060700c8b97d1 in PortalRun (portal=0x60700e8f4328, count=9223372036854775807, isTopLevel=true, run_once=true, dest=0x60700e9531e0, altdest=0x60700e9531e0,

=> Already before execution level no scan keys !

Vector Search -

sednai
pgvector [
* indxpath.c
* Routines to determine which indexes are usable for scanning a
Why no scan keys 9 * given relation, and create Paths accordingly.
. * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
We have tO dlg deeper e * Portions Copyright (c) 1994, Regents of the University of California
Let us look into * IDENTIFICATION
* src/backend/optimizer/path/indxpath.c
2213 /*
2214 * match_clause_to_indexcol()
2215 * Determine whether a restriction clause matches a column of an index,
2216 * and if so, build an IndexClause node describing the details.
2217 *
2218 * To match an index normally, an operator clause:
2219 *
2220 * (1) must be in the form (indexkey op const) or (const op indexkey);
2221 * and
2222 * (2) must contain an operator which is in the index's operator family
2223 * for this column; and
2224 * (3) must match the collation of the index, if collation is relevant.

2225 *

Vector Search

sednai

pgvector
Why no scan keys ?
We have to dig deeper ...

_ embedding <->[...]'< 10
Let us look into
2213 /* — > Indexkey can not be matched !
2214 * match_clause_to_indexcol())
2215 * Determine whether a restriction clause matches a column of an index, op(indexkey, '[..."]) op const
2216 * and if so, build an IndexClause node describing the details.
2217 *
2218 * To match an index normally, an operator clause:
2219 *
2220 * (1) must be in the form (indexkey op const) or (const op indexkey);
2221 * and
2222 * (2) must contain an operator which is in the index's operator family
2223 * for this column; and
2224 * (3) must match the collation of the index, if collation is relevant.

2225 *

Vector Search

pgvector

Why no scan keys ?

We have to dig deeper ...

_ embedding <->[...]'< 10
Let us look into

— Indexkey can not be matched !

. . op(indexkey, [..."]) op const
=> Looks like Postgres enhancement required ! p(Y, 1) op

BUT: May take ages to get upstream ...

Vector Search

pgvector hack
Quicker to production:

Let us introduce a new operator, thereby hacking the into the ORDER BY:~

New operator for wHere clause directly in index scan (only for euclidean metric so far):

vector <!> vector_adv d;
with
vector_adv = (vector,int,float,int) d;

int specifies the filter operator, float the condition value

-2 <=

-100: no filter

Vector Search

pgvector hack
Quicker to production:

Let us introduce a new operator, thereby hacking the into the ORDER BY:~

New operator for wHere clause directly in index scan (only for euclidean metric so far):

vector <!> vector_adv d;
with /
vector_adv = (vector,int,float,int) d;

int specifies the filter operator, float the condition value

-2 <=

-100: no filter

Vector Search

pgvector hack

Quicker to production:
Let us introduce a new operator, thereby hacking the
Query:

embedding <!> (‘[...]’, -1, 10.0, 0)

into the ORDER BY:

10000

Vector Search

pgvector hack

Quicker to production:
Let us introduce a new operator, thereby hacking the
Query:

embedding <!>|(‘[...]’, -1, 10.0, 0)

into the ORDER BY:

10000

Vector Search

pgvector hack

What about performance ?

- 2M row Gaia dataset, 79 float8 features

- 40 ivfflat clusters, ivfflat.probes = 20

- Retrieve points up to a max distance from a query point (sparse return)
- After warmup

BGW with filter on CPU

Limit (cost=0.00..3105.50 rows=10000 width=16) (actual time=18.928..18.932 rows=1 loops=1)
-> Index Scan using lorenzo_attrs_idx on lorenzo (cost=0.00..563333.26 rows=1813988 width=16) (actual time=18.925..18.927 rows=1 loops=1)
Order By: (attrs <!> "("[-0.36719987,0.8524608,-0.5427666,-1.6615063,1.1010165,0.06038815,-0.8972259,-1.1181297,0.23769811,1.6662519, -1

18473, -0.042955805,0.17839357,0.08050123,0.27791676,-0.425645,0.11280374,0.84778684,0.08167486,1.8496727,0.8007245,0.5793525,-0.5038844,0.22990:
75,0.12975255,-1.9553635,0.9473572,-2.2433414,-0.30360684,0.33857238,-0.21312521,2.3237233,-0.060708717,0.339421,-2.0196183,-0.35616732,1.863671
.0749731,-1.5635711,-1.2368783,-0.96010184,-0.6722383,0.8274576,-0.7714504,-0.16363333,-0.96023947,-0.16326201,-1.0754527,-0.6974341,-2.3611114,
0.03672114,1.2685906,-0.22232309,-0.17129573,-0.30436236,-1.1221358,0.6857615, -0.60302067,0.22385728,-1.0727525,-1.6519747,-0.9824103,-1.525193:
1.1835048,-2.293227,1.9016955,-2.8030064, -0.045054823, -0.14567287]",-1,4) ' : :vector_adv)

Planning Time: 0.188 ms

Execution Time: 18.980 ms

(5 rows)

pavz=#

Vector Search

pgvector hack

What about performance ?

- 2M row Gaia dataset, 79 float8 features

- 40 ivfflat clusters, ivfflat.probes = 20

- Retrieve points up to a max distance from a query point (sparse return)
- After warmup

BGW with filter on GPU

Limit (cost=0.00..3105.50 rows=10000 width=16) (actual time=2.482..2.488 rows=1 loops=1)
-> Index Scan using lorenzo_attrs_idx on lorenzo (cost=0.00..563333.26 rows=1813988 width=16) (actual time=2.478..2.482 rows=1 loops=1)

Order By: (attrs <!> '("[-0.36719987,0.8524608,-0.5427666,-1.6615063,1.1010165,0.06038815,-0.8972259,-1.1181297,0.23769811,1.6662519, -!

18473,-0.042955805,0.17839357,0.08050123,0.27791676,-0.425645,0.11280374,0.84778684,0.08167486,1.8496727,0.8007245,0.5793525,-0.5038844,0.22990:

75,0.12975255,-1.9553635,0.9473572,-2.2433414,-0.30360684,0.33857238,-0.21312521,2.3237233,-0.060708717,0.339421,-2.0196183,-0.35616732,1.86367!

.0749731,-1.5635711,-1.2368783,-0.96010184,-0.6722383,0.8274576,-0.7714504,-0.16363333,-0.96023947,-0.16326201,-1.0754527,-0.6974341,-2.3611114,

0.03672114,1.2685906,-0.22232309,-0.17129573,-0.30436236,-1.1221358,0.6857615,-0.60302067,0.22385728,-1.0727525,-1.6519747,-0.9824103,-1.525193:

1.1835048,-2.293227,1.9016955, -2.8030064, -0.045054823,-0.14567287]",-1,4) " : :vector_adv)

Planning Time: 0.199 ms

Execution Time: 2.548 ms

(5 rows)

pav2=# i

Vector Search

pgvector hack

What about performance ?

- 2M row Gaia dataset, 79 float8 features

- 40 ivfflat clusters, ivfflat.probes = 20

- Retrieve points up to a max distance from a query point (sparse return)
- After warmup

BGW with filter on GPU

Limit (cost=0.00..3105.50 rows=10000 width=16) (actual time=2.482..2.488 rows=1 loops=1)
-> Index Scan using lorenzo_attrs_idx on lorenzo (cost=0.00..563333.26 rows=1813988 width=16) (actual time=2.478..2.482 rows=1 loops=1)

Order By: (attrs <!> '("[-0.36719987,0.8524608,-0.5427666,-1.6615063,1.1010165,0.06038815,-0.8972259,-1.1181297,0.23769811,1.6662519, -!

18473,-0.042955805,0.17839357,0.08050123,0.27791676,-0.425645,0.11280374,0.84778684,0.08167486,1.8496727,0.8007245,0.5793525,-0.5038844,0.22990:

75,0.12975255,-1.9553635,0.9473572,-2.2433414,-0.30360684,0.33857238,-0.21312521,2.3237233,-0.060708717,0.339421,-2.0196183,-0.35616732,1.86367!

.0749731,-1.5635711,-1.2368783,-0.96010184,-0.6722383,0.8274576,-0.7714504,-0.16363333,-0.96023947,-0.16326201,-1.0754527,-0.6974341,-2.3611114,

0.03672114,1.2685906,-0.22232309,-0.17129573,-0.30436236,-1.1221358,0.6857615,-0.60302067,0.22385728,-1.0727525,-1.6519747,-0.9824103,-1.525193:

1.1835048,-2.293227,1.9016955, -2.8030064, -0.045054823,-0.14567287]",-1,4) " : :vector_adv)

Planning Time: 0.199 ms

Execution Time: 2.548 ms

(5 rows)

pav2=# i

=> 200x speedup !

sednai

... LIMIT TRICKS ...

Vector Search

pgvector hack

PostgreSQL plan generation (simplified)

FROM

N

S WHERE <«—— Hack with new vector type

l

“ORDERBY < — ruew

|

LIMIT

Vector Search

pgvector hack

PostgreSQL plan generation (simplified)

FROM

New operator for wiere clause directly in index scan (only for euclidean metric so far):

vector <!> vector_adv
with /
vector_adv = (vector,int,float,int)
int specifies the filter operator, float the condition value

>

© BN
nov

-1 <
-2i <=

-100: no filter

Hack with new vector type
(WARNING: Not fail safe if you do not know what you are doing !)

i

i

Vector Search -
sednai
pgvector hack
Why do | want to do that ? We can do instead of a full a partial sort (kth-element) + a small
sort !
FROM — O(N) + O(k log k) scaling instead of O(N log N)
. l n
CPU: std::nth_element
.~ WHERE OneAPI: oneapi::dpl::nth_element
l Nvidia: Missing. Instead: raft: :matrix::select_k
- ORDER BY
L|M|T ------ : <4+— Hack with new vector type

(WARNING: Not fail safe if you do not know what you are doing !)

Vector Search

pgvector hack

Example:

Wikipedia - OpenAl embeddings
(—=220k vectors; 1536d)

X2
L.

10 ~

5
-
.
0 ’

—5

X1

PGVECTOR (index with 200 ivfflat clusters)

pgv=# set ivfflat.probes = 20;
SET
pgv=# explain analyze select id from wiki order by vec <-> (select vec from wiki limit 1) limit 20;
QUERY PLAN

Limit (cost=0.09..56.84 rows=20 width=16) (actual time=68.925..69.208 row:

InitPlan 1 (returns $0)

-> Limit (cost=0.00..0.09 rows=1 width=18) (actual time=0.015..0.016 rows=1 loops=1)
-> Seq Scan on wiki wiki_1 (cost=0.00..19949.82 rows=224482 width=18) (actual time=0.014..0.014 rows=1 loops=1)
-> Index Scan using wiki_vec_idx on wiki (cost=0.00..637017.14 rows=224482 width=16) (actual time=68.922..69.202 rows=20 loops=1)
order By: (vec <-> $0)

Planning Time: 0.253 ms
Execution Time: 69.402 ms
(8 rows)

pav=t I

BGW-CPU ~1.7x

pgv=# set ivfflat.bgw = 1;
SET

pav=# explain analyze select id from wiki order by vec <!> ((select vec from wiki limit 1),-100,0,0) linit 20;
QUERY PLAN

Limit (cost=0.09..56.84 rows=20 width=16) (actual time=39.741..40.176 row:
InitPlan 1 (returns $0)
-> Limit (cost=0.00..0.09 rows=1 width=18) (actual time=0.027..0.028 rows=1 loops=1)
-> Seq Scan on wiki wiki_1 (cost=0.00..19949.82 rows=224482 width=18) (actual time=0.025..0.026 rows=1 loops=1
-> Index Scan using wiki_vec_idx on wiki (cost=0.00..637017.14 rows=224482 width=16) (actual time=39.737..40.167 rows=§0 loops=1)
order By: (vec <!> ROW(($0)::vector, '-100'::integer, '0'::real, 0))
Planning Time: 0.432 ms
Execution Time: 40.277 ms

(8 rows)
pav= I

BGW-CPU with LMT ~ 1.25x ~2.2x
pgv=# explain analyze select id from wiki order by ykc <!> ((select vec from wiki limit 1),-100,p,20) |limit 20; v

QUERY PLAN

Limit (cost=0.09..56.84 rows=20 width=16) (actual time=31.550..31.887 row:

InitPlan 1 (returns $0)

-> Limit (cost=0.00..0.09 rows=1 width=18) (actual time=0.007..0.008 rows=1 loops=1)
-> Seq Scan on wiki wiki_1 (cost=0.00..19949.82 rows=224482 width=18) (actual time=0.007..0.007 rows=1 loops=1)
-> Index Scan using wiki_vec_idx on wiki (cost=0.00..637017.14 rows=224482 width=16) (actual time=31.548..31.882 rows=20 loops=1)
Order By: (vec <!> ROW(($0)::vector, '-100'::integer, '0'::real, 20))

Planning Time: 0.124 ms
Execution Time: 31.934 ms
(8 rows)

pav=# Il

Vector Search

pgvector hack

Example:
GIST-960 with CPU-BGW backend
GIST-960, test set queries 20 GIST-960, test set queries
2001 - « ivfflat (bgw-cpu) 19 « ivfflat (bgw-cpu)
« ivfflat (bgw-cpu-Imt) 18 1 = ivfflat (bgw-cpu-Imt)
180 4 17 4
16 -
160 A 15
14 -
1404 .. 13 4
. 12 -
120
% i 73 1n4 ., .
£ 100 “w.s .® . § 101 i)
£l ‘ .’ . & . g 27
80 o %¥e, = - % on, o 8 ., . . .
[- o .,
60 . ;c.:"'.; ’-" ..'"“-..:":. e ;_ IR SO R B L
ol .. LA o<, 51 te -
. " 4 T e
T e 3 4 H
20 4
~, ;:-' 24
0+ SR, 14
: : ' T T T T T T T T 0 : . : . . r . . 1 r
00 01 02 03 04 05 06 07 08 09 10 0.80 0.82 084 0.86 088 090 0.92 094 096 098 100

recall recall

sednai

... REMARKS & OUTLOOK ...

Vector Search
pgvector hack
General remarks:

- Proof-of-concept

- No active memory management
(memory freed only upon killing the worker)

- Enough shared memory needs to be reserved for number of expected returns

- As more sparse the return, as better will be the speedup

Vector Search

pgvector hack

Can we do more ?

Improvements of code (GPU kernels) are possible.

Faster initial loading via Nvidia GPUDirect (NVMe <-> GPU DMA)
Product quantization

Multi-threading on the worker level

For significant performance improvement, more vectorization ...
(for instance, to query for several points at once)

Port other algorithms (HNSW, DiskANN, ...)

Use Nvidia RAFT and cuVS instead ?!

... THANK YOU ...

(feedback link)

Project funded by

*
* ** F u nded by U K Research u Schweizerische Eidgenossenschaft Federal Department of Economic Affairs,

: * Confédération suisse Education and Research EAER
* * th e E u ro ea n U n io n d I M Confederazione Svizzera State Secretariat for Education,
* K p an n n ovatl on Confederaziun svizra Research and Innovation SERI

Swiss Confederation

Funded by the European Union. Views and opinions are however those of the author(s) only and do not necessarily reflect those of the European Union or the HaDEA. Neither the
European Union nor the granting authority can be held responsible for them. Project number: 101092850.

AERO has also received funding from UKRI under grants no. 10048318 and 10048915, and the Swiss State Secretariat for Education, Research, and Innovation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134

